Linux 5.14 --> Bug für Laptops Backlight?

Status
Dieses Thema wurde gelöst! Zur Lösung gehen…

Zvoni

Erfahrenes Mitglied
Mahlzeit an die Pinguine hier.

Hardware: Laptop Lenovo Ideapad 110 mit AMD-GPU
OS: Manjaro Cinnamon aktuell ("Manjaro Pahvu - Cinnamon 5.0.5")

Ich hab Linux 5.10 LTS, und Linux 5.13.19 installiert (ich behalte immer die letzte LTS)
5.13.19 ist EOL, und wird empfohlen auf 5.14 hoch.
gesagt, getan (5.14.7 glaub ich), neustart, und schon die zweite Seite der Bootmessages verdunkelt sich der Bildschirm, geschweige denn LightDM-Login bzw. danach Cinnamon Desktop.
Die Dunkler/Heller Funktionstasten zeigen keine Wirkung, im Control-Panel steht Helligkeit auf 100%, kann hin und her schieben, passiert nix, Screen bleibt sehr dunkel

Hab in einem Forum einen angeblichen Workaround gefunden per udev-Regel, hat bei mir aber auch nicht funktioniert. (oder ich hab nen falschen Parameter gesetzt.
Die haben alle amdgpu_bl0 während mein dmesg amdgpu_bl1 auswirft)
Laptop backlight dims to zero on boot with kernel 5.14.0
Wobei ich zugeben muss, dass ich nicht in /sys/class/backlight/ nachgeschaut habe, was da drin steht
In GRUB auf 5.13.19 umgeschaltet. läuft!

Irgendjemand ne Idee bzw. wie bekannt ist die Regression?
 
Mahlzeit mein Lieber.
Ich habe etwas Google bemüht und mich durch die unfassbar schlecht aufgebaute Lenovo-Website geschlagen. Das letzte BIOS-Update ist von 2018. Ich gehe mal davon aus, dass das wohl auf deiner Maschine schon drauf ist.

Also ab in den Linux Kernelcode und etwas im Ordner /drivers/video/backlight rumgestochert. Das hier ist die Datei pwm_bl.c - einmal von Version 5.13.19 und einmal von Version 5.14:
C:
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Simple PWM based backlight control, board code has to setup
 * 1) pin configuration so PWM waveforms can output
 * 2) platform_data being correctly configured
 */

#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/fb.h>
#include <linux/backlight.h>
#include <linux/err.h>
#include <linux/pwm.h>
#include <linux/pwm_backlight.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>

struct pwm_bl_data {
    struct pwm_device    *pwm;
    struct device        *dev;
    unsigned int        lth_brightness;
    unsigned int        *levels;
    bool            enabled;
    struct regulator    *power_supply;
    struct gpio_desc    *enable_gpio;
    unsigned int        scale;
    bool            legacy;
    unsigned int        post_pwm_on_delay;
    unsigned int        pwm_off_delay;
    int            (*notify)(struct device *,
                      int brightness);
    void            (*notify_after)(struct device *,
                    int brightness);
    int            (*check_fb)(struct device *, struct fb_info *);
    void            (*exit)(struct device *);
};

static void pwm_backlight_power_on(struct pwm_bl_data *pb)
{
    struct pwm_state state;
    int err;

    pwm_get_state(pb->pwm, &state);
    if (pb->enabled)
        return;

    err = regulator_enable(pb->power_supply);
    if (err < 0)
        dev_err(pb->dev, "failed to enable power supply\n");

    state.enabled = true;
    pwm_apply_state(pb->pwm, &state);

    if (pb->post_pwm_on_delay)
        msleep(pb->post_pwm_on_delay);

    if (pb->enable_gpio)
        gpiod_set_value_cansleep(pb->enable_gpio, 1);

    pb->enabled = true;
}

static void pwm_backlight_power_off(struct pwm_bl_data *pb)
{
    struct pwm_state state;

    pwm_get_state(pb->pwm, &state);
    if (!pb->enabled)
        return;

    if (pb->enable_gpio)
        gpiod_set_value_cansleep(pb->enable_gpio, 0);

    if (pb->pwm_off_delay)
        msleep(pb->pwm_off_delay);

    state.enabled = false;
    state.duty_cycle = 0;
    pwm_apply_state(pb->pwm, &state);

    regulator_disable(pb->power_supply);
    pb->enabled = false;
}

static int compute_duty_cycle(struct pwm_bl_data *pb, int brightness)
{
    unsigned int lth = pb->lth_brightness;
    struct pwm_state state;
    u64 duty_cycle;

    pwm_get_state(pb->pwm, &state);

    if (pb->levels)
        duty_cycle = pb->levels[brightness];
    else
        duty_cycle = brightness;

    duty_cycle *= state.period - lth;
    do_div(duty_cycle, pb->scale);

    return duty_cycle + lth;
}

static int pwm_backlight_update_status(struct backlight_device *bl)
{
    struct pwm_bl_data *pb = bl_get_data(bl);
    int brightness = backlight_get_brightness(bl);
    struct pwm_state state;

    if (pb->notify)
        brightness = pb->notify(pb->dev, brightness);

    if (brightness > 0) {
        pwm_get_state(pb->pwm, &state);
        state.duty_cycle = compute_duty_cycle(pb, brightness);
        pwm_apply_state(pb->pwm, &state);
        pwm_backlight_power_on(pb);
    } else {
        pwm_backlight_power_off(pb);
    }

    if (pb->notify_after)
        pb->notify_after(pb->dev, brightness);

    return 0;
}

static int pwm_backlight_check_fb(struct backlight_device *bl,
                  struct fb_info *info)
{
    struct pwm_bl_data *pb = bl_get_data(bl);

    return !pb->check_fb || pb->check_fb(pb->dev, info);
}

static const struct backlight_ops pwm_backlight_ops = {
    .update_status    = pwm_backlight_update_status,
    .check_fb    = pwm_backlight_check_fb,
};

#ifdef CONFIG_OF
#define PWM_LUMINANCE_SHIFT    16
#define PWM_LUMINANCE_SCALE    (1 << PWM_LUMINANCE_SHIFT) /* luminance scale */

/*
 * CIE lightness to PWM conversion.
 *
 * The CIE 1931 lightness formula is what actually describes how we perceive
 * light:
 *          Y = (L* / 903.3)           if L* ≤ 8
 *          Y = ((L* + 16) / 116)^3    if L* > 8
 *
 * Where Y is the luminance, the amount of light coming out of the screen, and
 * is a number between 0.0 and 1.0; and L* is the lightness, how bright a human
 * perceives the screen to be, and is a number between 0 and 100.
 *
 * The following function does the fixed point maths needed to implement the
 * above formula.
 */
static u64 cie1931(unsigned int lightness)
{
    u64 retval;

    /*
     * @lightness is given as a number between 0 and 1, expressed
     * as a fixed-point number in scale
     * PWM_LUMINANCE_SCALE. Convert to a percentage, still
     * expressed as a fixed-point number, so the above formulas
     * can be applied.
     */
    lightness *= 100;
    if (lightness <= (8 * PWM_LUMINANCE_SCALE)) {
        retval = DIV_ROUND_CLOSEST(lightness * 10, 9033);
    } else {
        retval = (lightness + (16 * PWM_LUMINANCE_SCALE)) / 116;
        retval *= retval * retval;
        retval += 1ULL << (2*PWM_LUMINANCE_SHIFT - 1);
        retval >>= 2*PWM_LUMINANCE_SHIFT;
    }

    return retval;
}

/*
 * Create a default correction table for PWM values to create linear brightness
 * for LED based backlights using the CIE1931 algorithm.
 */
static
int pwm_backlight_brightness_default(struct device *dev,
                     struct platform_pwm_backlight_data *data,
                     unsigned int period)
{
    unsigned int i;
    u64 retval;

    /*
     * Once we have 4096 levels there's little point going much higher...
     * neither interactive sliders nor animation benefits from having
     * more values in the table.
     */
    data->max_brightness =
        min((int)DIV_ROUND_UP(period, fls(period)), 4096);

    data->levels = devm_kcalloc(dev, data->max_brightness,
                    sizeof(*data->levels), GFP_KERNEL);
    if (!data->levels)
        return -ENOMEM;

    /* Fill the table using the cie1931 algorithm */
    for (i = 0; i < data->max_brightness; i++) {
        retval = cie1931((i * PWM_LUMINANCE_SCALE) /
                 data->max_brightness) * period;
        retval = DIV_ROUND_CLOSEST_ULL(retval, PWM_LUMINANCE_SCALE);
        if (retval > UINT_MAX)
            return -EINVAL;
        data->levels[i] = (unsigned int)retval;
    }

    data->dft_brightness = data->max_brightness / 2;
    data->max_brightness--;

    return 0;
}

static int pwm_backlight_parse_dt(struct device *dev,
                  struct platform_pwm_backlight_data *data)
{
    struct device_node *node = dev->of_node;
    unsigned int num_levels;
    unsigned int num_steps = 0;
    struct property *prop;
    unsigned int *table;
    int length;
    u32 value;
    int ret;

    if (!node)
        return -ENODEV;

    memset(data, 0, sizeof(*data));

    /*
     * These values are optional and set as 0 by default, the out values
     * are modified only if a valid u32 value can be decoded.
     */
    of_property_read_u32(node, "post-pwm-on-delay-ms",
                 &data->post_pwm_on_delay);
    of_property_read_u32(node, "pwm-off-delay-ms", &data->pwm_off_delay);

    /*
     * Determine the number of brightness levels, if this property is not
     * set a default table of brightness levels will be used.
     */
    prop = of_find_property(node, "brightness-levels", &length);
    if (!prop)
        return 0;

    num_levels = length / sizeof(u32);

    /* read brightness levels from DT property */
    if (num_levels > 0) {
        size_t size = sizeof(*data->levels) * num_levels;

        data->levels = devm_kzalloc(dev, size, GFP_KERNEL);
        if (!data->levels)
            return -ENOMEM;

        ret = of_property_read_u32_array(node, "brightness-levels",
                         data->levels,
                         num_levels);
        if (ret < 0)
            return ret;

        ret = of_property_read_u32(node, "default-brightness-level",
                       &value);
        if (ret < 0)
            return ret;

        data->dft_brightness = value;

        /*
         * This property is optional, if is set enables linear
         * interpolation between each of the values of brightness levels
         * and creates a new pre-computed table.
         */
        of_property_read_u32(node, "num-interpolated-steps",
                     &num_steps);

        /*
         * Make sure that there is at least two entries in the
         * brightness-levels table, otherwise we can't interpolate
         * between two points.
         */
        if (num_steps) {
            unsigned int num_input_levels = num_levels;
            unsigned int i;
            u32 x1, x2, x, dx;
            u32 y1, y2;
            s64 dy;

            if (num_input_levels < 2) {
                dev_err(dev, "can't interpolate\n");
                return -EINVAL;
            }

            /*
             * Recalculate the number of brightness levels, now
             * taking in consideration the number of interpolated
             * steps between two levels.
             */
            num_levels = (num_input_levels - 1) * num_steps + 1;
            dev_dbg(dev, "new number of brightness levels: %d\n",
                num_levels);

            /*
             * Create a new table of brightness levels with all the
             * interpolated steps.
             */
            size = sizeof(*table) * num_levels;
            table = devm_kzalloc(dev, size, GFP_KERNEL);
            if (!table)
                return -ENOMEM;
            /*
             * Fill the interpolated table[x] = y
             * by draw lines between each (x1, y1) to (x2, y2).
             */
            dx = num_steps;
            for (i = 0; i < num_input_levels - 1; i++) {
                x1 = i * dx;
                x2 = x1 + dx;
                y1 = data->levels[i];
                y2 = data->levels[i + 1];
                dy = (s64)y2 - y1;

                for (x = x1; x < x2; x++) {
                    table[x] = y1 +
                        div_s64(dy * (x - x1), dx);
                }
            }
            /* Fill in the last point, since no line starts here. */
            table[x2] = y2;

            /*
             * As we use interpolation lets remove current
             * brightness levels table and replace for the
             * new interpolated table.
             */
            devm_kfree(dev, data->levels);
            data->levels = table;
        }

        data->max_brightness = num_levels - 1;
    }

    return 0;
}

static const struct of_device_id pwm_backlight_of_match[] = {
    { .compatible = "pwm-backlight" },
    { }
};

MODULE_DEVICE_TABLE(of, pwm_backlight_of_match);
#else
static int pwm_backlight_parse_dt(struct device *dev,
                  struct platform_pwm_backlight_data *data)
{
    return -ENODEV;
}

static
int pwm_backlight_brightness_default(struct device *dev,
                     struct platform_pwm_backlight_data *data,
                     unsigned int period)
{
    return -ENODEV;
}
#endif

static bool pwm_backlight_is_linear(struct platform_pwm_backlight_data *data)
{
    unsigned int nlevels = data->max_brightness + 1;
    unsigned int min_val = data->levels[0];
    unsigned int max_val = data->levels[nlevels - 1];
    /*
     * Multiplying by 128 means that even in pathological cases such
     * as (max_val - min_val) == nlevels the error at max_val is less
     * than 1%.
     */
    unsigned int slope = (128 * (max_val - min_val)) / nlevels;
    unsigned int margin = (max_val - min_val) / 20; /* 5% */
    int i;

    for (i = 1; i < nlevels; i++) {
        unsigned int linear_value = min_val + ((i * slope) / 128);
        unsigned int delta = abs(linear_value - data->levels[i]);

        if (delta > margin)
            return false;
    }

    return true;
}

static int pwm_backlight_initial_power_state(const struct pwm_bl_data *pb)
{
    struct device_node *node = pb->dev->of_node;
    bool active = true;

    /*
     * If the enable GPIO is present, observable (either as input
     * or output) and off then the backlight is not currently active.
     * */
    if (pb->enable_gpio && gpiod_get_value_cansleep(pb->enable_gpio) == 0)
        active = false;

    if (!regulator_is_enabled(pb->power_supply))
        active = false;

    if (!pwm_is_enabled(pb->pwm))
        active = false;

    /*
     * Synchronize the enable_gpio with the observed state of the
     * hardware.
     */
    if (pb->enable_gpio)
        gpiod_direction_output(pb->enable_gpio, active);

    /*
     * Do not change pb->enabled here! pb->enabled essentially
     * tells us if we own one of the regulator's use counts and
     * right now we do not.
     */

    /* Not booted with device tree or no phandle link to the node */
    if (!node || !node->phandle)
        return FB_BLANK_UNBLANK;

    /*
     * If the driver is probed from the device tree and there is a
     * phandle link pointing to the backlight node, it is safe to
     * assume that another driver will enable the backlight at the
     * appropriate time. Therefore, if it is disabled, keep it so.
     */
    return active ? FB_BLANK_UNBLANK: FB_BLANK_POWERDOWN;
}

static int pwm_backlight_probe(struct platform_device *pdev)
{
    struct platform_pwm_backlight_data *data = dev_get_platdata(&pdev->dev);
    struct platform_pwm_backlight_data defdata;
    struct backlight_properties props;
    struct backlight_device *bl;
    struct device_node *node = pdev->dev.of_node;
    struct pwm_bl_data *pb;
    struct pwm_state state;
    unsigned int i;
    int ret;

    if (!data) {
        ret = pwm_backlight_parse_dt(&pdev->dev, &defdata);
        if (ret < 0) {
            dev_err(&pdev->dev, "failed to find platform data\n");
            return ret;
        }

        data = &defdata;
    }

    if (data->init) {
        ret = data->init(&pdev->dev);
        if (ret < 0)
            return ret;
    }

    pb = devm_kzalloc(&pdev->dev, sizeof(*pb), GFP_KERNEL);
    if (!pb) {
        ret = -ENOMEM;
        goto err_alloc;
    }

    pb->notify = data->notify;
    pb->notify_after = data->notify_after;
    pb->check_fb = data->check_fb;
    pb->exit = data->exit;
    pb->dev = &pdev->dev;
    pb->enabled = false;
    pb->post_pwm_on_delay = data->post_pwm_on_delay;
    pb->pwm_off_delay = data->pwm_off_delay;

    pb->enable_gpio = devm_gpiod_get_optional(&pdev->dev, "enable",
                          GPIOD_ASIS);
    if (IS_ERR(pb->enable_gpio)) {
        ret = PTR_ERR(pb->enable_gpio);
        goto err_alloc;
    }

    pb->power_supply = devm_regulator_get(&pdev->dev, "power");
    if (IS_ERR(pb->power_supply)) {
        ret = PTR_ERR(pb->power_supply);
        goto err_alloc;
    }

    pb->pwm = devm_pwm_get(&pdev->dev, NULL);
    if (IS_ERR(pb->pwm) && PTR_ERR(pb->pwm) != -EPROBE_DEFER && !node) {
        dev_err(&pdev->dev, "unable to request PWM, trying legacy API\n");
        pb->legacy = true;
        pb->pwm = pwm_request(data->pwm_id, "pwm-backlight");
    }

    if (IS_ERR(pb->pwm)) {
        ret = PTR_ERR(pb->pwm);
        if (ret != -EPROBE_DEFER)
            dev_err(&pdev->dev, "unable to request PWM\n");
        goto err_alloc;
    }

    dev_dbg(&pdev->dev, "got pwm for backlight\n");

    /* Sync up PWM state. */
    pwm_init_state(pb->pwm, &state);

    /*
     * The DT case will set the pwm_period_ns field to 0 and store the
     * period, parsed from the DT, in the PWM device. For the non-DT case,
     * set the period from platform data if it has not already been set
     * via the PWM lookup table.
     */
    if (!state.period && (data->pwm_period_ns > 0))
        state.period = data->pwm_period_ns;

    ret = pwm_apply_state(pb->pwm, &state);
    if (ret) {
        dev_err(&pdev->dev, "failed to apply initial PWM state: %d\n",
            ret);
        goto err_alloc;
    }

    memset(&props, 0, sizeof(struct backlight_properties));

    if (data->levels) {
        pb->levels = data->levels;

        /*
         * For the DT case, only when brightness levels is defined
         * data->levels is filled. For the non-DT case, data->levels
         * can come from platform data, however is not usual.
         */
        for (i = 0; i <= data->max_brightness; i++)
            if (data->levels[i] > pb->scale)
                pb->scale = data->levels[i];

        if (pwm_backlight_is_linear(data))
            props.scale = BACKLIGHT_SCALE_LINEAR;
        else
            props.scale = BACKLIGHT_SCALE_NON_LINEAR;
    } else if (!data->max_brightness) {
        /*
         * If no brightness levels are provided and max_brightness is
         * not set, use the default brightness table. For the DT case,
         * max_brightness is set to 0 when brightness levels is not
         * specified. For the non-DT case, max_brightness is usually
         * set to some value.
         */

        /* Get the PWM period (in nanoseconds) */
        pwm_get_state(pb->pwm, &state);

        ret = pwm_backlight_brightness_default(&pdev->dev, data,
                               state.period);
        if (ret < 0) {
            dev_err(&pdev->dev,
                "failed to setup default brightness table\n");
            goto err_alloc;
        }

        for (i = 0; i <= data->max_brightness; i++) {
            if (data->levels[i] > pb->scale)
                pb->scale = data->levels[i];

            pb->levels = data->levels;
        }

        props.scale = BACKLIGHT_SCALE_NON_LINEAR;
    } else {
        /*
         * That only happens for the non-DT case, where platform data
         * sets the max_brightness value.
         */
        pb->scale = data->max_brightness;
    }

    pb->lth_brightness = data->lth_brightness * (div_u64(state.period,
                pb->scale));

    props.type = BACKLIGHT_RAW;
    props.max_brightness = data->max_brightness;
    bl = backlight_device_register(dev_name(&pdev->dev), &pdev->dev, pb,
                       &pwm_backlight_ops, &props);
    if (IS_ERR(bl)) {
        dev_err(&pdev->dev, "failed to register backlight\n");
        ret = PTR_ERR(bl);
        if (pb->legacy)
            pwm_free(pb->pwm);
        goto err_alloc;
    }

    if (data->dft_brightness > data->max_brightness) {
        dev_warn(&pdev->dev,
             "invalid default brightness level: %u, using %u\n",
             data->dft_brightness, data->max_brightness);
        data->dft_brightness = data->max_brightness;
    }

    bl->props.brightness = data->dft_brightness;
    bl->props.power = pwm_backlight_initial_power_state(pb);
    backlight_update_status(bl);

    platform_set_drvdata(pdev, bl);
    return 0;

err_alloc:
    if (data->exit)
        data->exit(&pdev->dev);
    return ret;
}

static int pwm_backlight_remove(struct platform_device *pdev)
{
    struct backlight_device *bl = platform_get_drvdata(pdev);
    struct pwm_bl_data *pb = bl_get_data(bl);

    backlight_device_unregister(bl);
    pwm_backlight_power_off(pb);

    if (pb->exit)
        pb->exit(&pdev->dev);
    if (pb->legacy)
        pwm_free(pb->pwm);

    return 0;
}

static void pwm_backlight_shutdown(struct platform_device *pdev)
{
    struct backlight_device *bl = platform_get_drvdata(pdev);
    struct pwm_bl_data *pb = bl_get_data(bl);

    pwm_backlight_power_off(pb);
}

#ifdef CONFIG_PM_SLEEP
static int pwm_backlight_suspend(struct device *dev)
{
    struct backlight_device *bl = dev_get_drvdata(dev);
    struct pwm_bl_data *pb = bl_get_data(bl);

    if (pb->notify)
        pb->notify(pb->dev, 0);

    pwm_backlight_power_off(pb);

    if (pb->notify_after)
        pb->notify_after(pb->dev, 0);

    return 0;
}

static int pwm_backlight_resume(struct device *dev)
{
    struct backlight_device *bl = dev_get_drvdata(dev);

    backlight_update_status(bl);

    return 0;
}
#endif

static const struct dev_pm_ops pwm_backlight_pm_ops = {
#ifdef CONFIG_PM_SLEEP
    .suspend = pwm_backlight_suspend,
    .resume = pwm_backlight_resume,
    .poweroff = pwm_backlight_suspend,
    .restore = pwm_backlight_resume,
#endif
};

static struct platform_driver pwm_backlight_driver = {
    .driver        = {
        .name        = "pwm-backlight",
        .pm        = &pwm_backlight_pm_ops,
        .of_match_table    = of_match_ptr(pwm_backlight_of_match),
    },
    .probe        = pwm_backlight_probe,
    .remove        = pwm_backlight_remove,
    .shutdown    = pwm_backlight_shutdown,
};

module_platform_driver(pwm_backlight_driver);

MODULE_DESCRIPTION("PWM based Backlight Driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:pwm-backlight");
C:
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Simple PWM based backlight control, board code has to setup
 * 1) pin configuration so PWM waveforms can output
 * 2) platform_data being correctly configured
 */

#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/fb.h>
#include <linux/backlight.h>
#include <linux/err.h>
#include <linux/pwm.h>
#include <linux/pwm_backlight.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>

struct pwm_bl_data {
    struct pwm_device    *pwm;
    struct device        *dev;
    unsigned int        lth_brightness;
    unsigned int        *levels;
    bool            enabled;
    struct regulator    *power_supply;
    struct gpio_desc    *enable_gpio;
    unsigned int        scale;
    bool            legacy;
    unsigned int        post_pwm_on_delay;
    unsigned int        pwm_off_delay;
    int            (*notify)(struct device *,
                      int brightness);
    void            (*notify_after)(struct device *,
                    int brightness);
    int            (*check_fb)(struct device *, struct fb_info *);
    void            (*exit)(struct device *);
};

static void pwm_backlight_power_on(struct pwm_bl_data *pb)
{
    struct pwm_state state;
    int err;

    pwm_get_state(pb->pwm, &state);
    if (pb->enabled)
        return;

    err = regulator_enable(pb->power_supply);
    if (err < 0)
        dev_err(pb->dev, "failed to enable power supply\n");

    state.enabled = true;
    pwm_apply_state(pb->pwm, &state);

    if (pb->post_pwm_on_delay)
        msleep(pb->post_pwm_on_delay);

    if (pb->enable_gpio)
        gpiod_set_value_cansleep(pb->enable_gpio, 1);

    pb->enabled = true;
}

static void pwm_backlight_power_off(struct pwm_bl_data *pb)
{
    struct pwm_state state;

    pwm_get_state(pb->pwm, &state);
    if (!pb->enabled)
        return;

    if (pb->enable_gpio)
        gpiod_set_value_cansleep(pb->enable_gpio, 0);

    if (pb->pwm_off_delay)
        msleep(pb->pwm_off_delay);

    state.enabled = false;
    state.duty_cycle = 0;
    pwm_apply_state(pb->pwm, &state);

    regulator_disable(pb->power_supply);
    pb->enabled = false;
}

static int compute_duty_cycle(struct pwm_bl_data *pb, int brightness)
{
    unsigned int lth = pb->lth_brightness;
    struct pwm_state state;
    u64 duty_cycle;

    pwm_get_state(pb->pwm, &state);

    if (pb->levels)
        duty_cycle = pb->levels[brightness];
    else
        duty_cycle = brightness;

    duty_cycle *= state.period - lth;
    do_div(duty_cycle, pb->scale);

    return duty_cycle + lth;
}

static int pwm_backlight_update_status(struct backlight_device *bl)
{
    struct pwm_bl_data *pb = bl_get_data(bl);
    int brightness = backlight_get_brightness(bl);
    struct pwm_state state;

    if (pb->notify)
        brightness = pb->notify(pb->dev, brightness);

    if (brightness > 0) {
        pwm_get_state(pb->pwm, &state);
        state.duty_cycle = compute_duty_cycle(pb, brightness);
        pwm_apply_state(pb->pwm, &state);
        pwm_backlight_power_on(pb);
    } else {
        pwm_backlight_power_off(pb);
    }

    if (pb->notify_after)
        pb->notify_after(pb->dev, brightness);

    return 0;
}

static int pwm_backlight_check_fb(struct backlight_device *bl,
                  struct fb_info *info)
{
    struct pwm_bl_data *pb = bl_get_data(bl);

    return !pb->check_fb || pb->check_fb(pb->dev, info);
}

static const struct backlight_ops pwm_backlight_ops = {
    .update_status    = pwm_backlight_update_status,
    .check_fb    = pwm_backlight_check_fb,
};

#ifdef CONFIG_OF
#define PWM_LUMINANCE_SHIFT    16
#define PWM_LUMINANCE_SCALE    (1 << PWM_LUMINANCE_SHIFT) /* luminance scale */

/*
 * CIE lightness to PWM conversion.
 *
 * The CIE 1931 lightness formula is what actually describes how we perceive
 * light:
 *          Y = (L* / 903.3)           if L* ≤ 8
 *          Y = ((L* + 16) / 116)^3    if L* > 8
 *
 * Where Y is the luminance, the amount of light coming out of the screen, and
 * is a number between 0.0 and 1.0; and L* is the lightness, how bright a human
 * perceives the screen to be, and is a number between 0 and 100.
 *
 * The following function does the fixed point maths needed to implement the
 * above formula.
 */
static u64 cie1931(unsigned int lightness)
{
    u64 retval;

    /*
     * @lightness is given as a number between 0 and 1, expressed
     * as a fixed-point number in scale
     * PWM_LUMINANCE_SCALE. Convert to a percentage, still
     * expressed as a fixed-point number, so the above formulas
     * can be applied.
     */
    lightness *= 100;
    if (lightness <= (8 * PWM_LUMINANCE_SCALE)) {
        retval = DIV_ROUND_CLOSEST(lightness * 10, 9033);
    } else {
        retval = (lightness + (16 * PWM_LUMINANCE_SCALE)) / 116;
        retval *= retval * retval;
        retval += 1ULL << (2*PWM_LUMINANCE_SHIFT - 1);
        retval >>= 2*PWM_LUMINANCE_SHIFT;
    }

    return retval;
}

/*
 * Create a default correction table for PWM values to create linear brightness
 * for LED based backlights using the CIE1931 algorithm.
 */
static
int pwm_backlight_brightness_default(struct device *dev,
                     struct platform_pwm_backlight_data *data,
                     unsigned int period)
{
    unsigned int i;
    u64 retval;

    /*
     * Once we have 4096 levels there's little point going much higher...
     * neither interactive sliders nor animation benefits from having
     * more values in the table.
     */
    data->max_brightness =
        min((int)DIV_ROUND_UP(period, fls(period)), 4096);

    data->levels = devm_kcalloc(dev, data->max_brightness,
                    sizeof(*data->levels), GFP_KERNEL);
    if (!data->levels)
        return -ENOMEM;

    /* Fill the table using the cie1931 algorithm */
    for (i = 0; i < data->max_brightness; i++) {
        retval = cie1931((i * PWM_LUMINANCE_SCALE) /
                 data->max_brightness) * period;
        retval = DIV_ROUND_CLOSEST_ULL(retval, PWM_LUMINANCE_SCALE);
        if (retval > UINT_MAX)
            return -EINVAL;
        data->levels[i] = (unsigned int)retval;
    }

    data->dft_brightness = data->max_brightness / 2;
    data->max_brightness--;

    return 0;
}

static int pwm_backlight_parse_dt(struct device *dev,
                  struct platform_pwm_backlight_data *data)
{
    struct device_node *node = dev->of_node;
    unsigned int num_levels;
    unsigned int num_steps = 0;
    struct property *prop;
    unsigned int *table;
    int length;
    u32 value;
    int ret;

    if (!node)
        return -ENODEV;

    memset(data, 0, sizeof(*data));

    /*
     * These values are optional and set as 0 by default, the out values
     * are modified only if a valid u32 value can be decoded.
     */
    of_property_read_u32(node, "post-pwm-on-delay-ms",
                 &data->post_pwm_on_delay);
    of_property_read_u32(node, "pwm-off-delay-ms", &data->pwm_off_delay);

    /*
     * Determine the number of brightness levels, if this property is not
     * set a default table of brightness levels will be used.
     */
    prop = of_find_property(node, "brightness-levels", &length);
    if (!prop)
        return 0;

    num_levels = length / sizeof(u32);

    /* read brightness levels from DT property */
    if (num_levels > 0) {
        size_t size = sizeof(*data->levels) * num_levels;

        data->levels = devm_kzalloc(dev, size, GFP_KERNEL);
        if (!data->levels)
            return -ENOMEM;

        ret = of_property_read_u32_array(node, "brightness-levels",
                         data->levels,
                         num_levels);
        if (ret < 0)
            return ret;

        ret = of_property_read_u32(node, "default-brightness-level",
                       &value);
        if (ret < 0)
            return ret;

        data->dft_brightness = value;

        /*
         * This property is optional, if is set enables linear
         * interpolation between each of the values of brightness levels
         * and creates a new pre-computed table.
         */
        of_property_read_u32(node, "num-interpolated-steps",
                     &num_steps);

        /*
         * Make sure that there is at least two entries in the
         * brightness-levels table, otherwise we can't interpolate
         * between two points.
         */
        if (num_steps) {
            unsigned int num_input_levels = num_levels;
            unsigned int i;
            u32 x1, x2, x, dx;
            u32 y1, y2;
            s64 dy;

            if (num_input_levels < 2) {
                dev_err(dev, "can't interpolate\n");
                return -EINVAL;
            }

            /*
             * Recalculate the number of brightness levels, now
             * taking in consideration the number of interpolated
             * steps between two levels.
             */
            num_levels = (num_input_levels - 1) * num_steps + 1;
            dev_dbg(dev, "new number of brightness levels: %d\n",
                num_levels);

            /*
             * Create a new table of brightness levels with all the
             * interpolated steps.
             */
            size = sizeof(*table) * num_levels;
            table = devm_kzalloc(dev, size, GFP_KERNEL);
            if (!table)
                return -ENOMEM;
            /*
             * Fill the interpolated table[x] = y
             * by draw lines between each (x1, y1) to (x2, y2).
             */
            dx = num_steps;
            for (i = 0; i < num_input_levels - 1; i++) {
                x1 = i * dx;
                x2 = x1 + dx;
                y1 = data->levels[i];
                y2 = data->levels[i + 1];
                dy = (s64)y2 - y1;

                for (x = x1; x < x2; x++) {
                    table[x] = y1 +
                        div_s64(dy * (x - x1), dx);
                }
            }
            /* Fill in the last point, since no line starts here. */
            table[x2] = y2;

            /*
             * As we use interpolation lets remove current
             * brightness levels table and replace for the
             * new interpolated table.
             */
            devm_kfree(dev, data->levels);
            data->levels = table;
        }

        data->max_brightness = num_levels - 1;
    }

    return 0;
}

static const struct of_device_id pwm_backlight_of_match[] = {
    { .compatible = "pwm-backlight" },
    { }
};

MODULE_DEVICE_TABLE(of, pwm_backlight_of_match);
#else
static int pwm_backlight_parse_dt(struct device *dev,
                  struct platform_pwm_backlight_data *data)
{
    return -ENODEV;
}

static
int pwm_backlight_brightness_default(struct device *dev,
                     struct platform_pwm_backlight_data *data,
                     unsigned int period)
{
    return -ENODEV;
}
#endif

static bool pwm_backlight_is_linear(struct platform_pwm_backlight_data *data)
{
    unsigned int nlevels = data->max_brightness + 1;
    unsigned int min_val = data->levels[0];
    unsigned int max_val = data->levels[nlevels - 1];
    /*
     * Multiplying by 128 means that even in pathological cases such
     * as (max_val - min_val) == nlevels the error at max_val is less
     * than 1%.
     */
    unsigned int slope = (128 * (max_val - min_val)) / nlevels;
    unsigned int margin = (max_val - min_val) / 20; /* 5% */
    int i;

    for (i = 1; i < nlevels; i++) {
        unsigned int linear_value = min_val + ((i * slope) / 128);
        unsigned int delta = abs(linear_value - data->levels[i]);

        if (delta > margin)
            return false;
    }

    return true;
}

static int pwm_backlight_initial_power_state(const struct pwm_bl_data *pb)
{
    struct device_node *node = pb->dev->of_node;

    /* Not booted with device tree or no phandle link to the node */
    if (!node || !node->phandle)
        return FB_BLANK_UNBLANK;

    /*
     * If the driver is probed from the device tree and there is a
     * phandle link pointing to the backlight node, it is safe to
     * assume that another driver will enable the backlight at the
     * appropriate time. Therefore, if it is disabled, keep it so.
     */

    /* if the enable GPIO is disabled, do not enable the backlight */
    if (pb->enable_gpio && gpiod_get_value_cansleep(pb->enable_gpio) == 0)
        return FB_BLANK_POWERDOWN;

    /* The regulator is disabled, do not enable the backlight */
    if (!regulator_is_enabled(pb->power_supply))
        return FB_BLANK_POWERDOWN;

    /* The PWM is disabled, keep it like this */
    if (!pwm_is_enabled(pb->pwm))
        return FB_BLANK_POWERDOWN;

    return FB_BLANK_UNBLANK;
}

static int pwm_backlight_probe(struct platform_device *pdev)
{
    struct platform_pwm_backlight_data *data = dev_get_platdata(&pdev->dev);
    struct platform_pwm_backlight_data defdata;
    struct backlight_properties props;
    struct backlight_device *bl;
    struct device_node *node = pdev->dev.of_node;
    struct pwm_bl_data *pb;
    struct pwm_state state;
    unsigned int i;
    int ret;

    if (!data) {
        ret = pwm_backlight_parse_dt(&pdev->dev, &defdata);
        if (ret < 0) {
            dev_err(&pdev->dev, "failed to find platform data\n");
            return ret;
        }

        data = &defdata;
    }

    if (data->init) {
        ret = data->init(&pdev->dev);
        if (ret < 0)
            return ret;
    }

    pb = devm_kzalloc(&pdev->dev, sizeof(*pb), GFP_KERNEL);
    if (!pb) {
        ret = -ENOMEM;
        goto err_alloc;
    }

    pb->notify = data->notify;
    pb->notify_after = data->notify_after;
    pb->check_fb = data->check_fb;
    pb->exit = data->exit;
    pb->dev = &pdev->dev;
    pb->enabled = false;
    pb->post_pwm_on_delay = data->post_pwm_on_delay;
    pb->pwm_off_delay = data->pwm_off_delay;

    pb->enable_gpio = devm_gpiod_get_optional(&pdev->dev, "enable",
                          GPIOD_ASIS);
    if (IS_ERR(pb->enable_gpio)) {
        ret = PTR_ERR(pb->enable_gpio);
        goto err_alloc;
    }

    /*
     * If the GPIO is not known to be already configured as output, that
     * is, if gpiod_get_direction returns either 1 or -EINVAL, change the
     * direction to output and set the GPIO as active.
     * Do not force the GPIO to active when it was already output as it
     * could cause backlight flickering or we would enable the backlight too
     * early. Leave the decision of the initial backlight state for later.
     */
    if (pb->enable_gpio &&
        gpiod_get_direction(pb->enable_gpio) != 0)
        gpiod_direction_output(pb->enable_gpio, 1);

    pb->power_supply = devm_regulator_get(&pdev->dev, "power");
    if (IS_ERR(pb->power_supply)) {
        ret = PTR_ERR(pb->power_supply);
        goto err_alloc;
    }

    pb->pwm = devm_pwm_get(&pdev->dev, NULL);
    if (IS_ERR(pb->pwm) && PTR_ERR(pb->pwm) != -EPROBE_DEFER && !node) {
        dev_err(&pdev->dev, "unable to request PWM, trying legacy API\n");
        pb->legacy = true;
        pb->pwm = pwm_request(data->pwm_id, "pwm-backlight");
    }

    if (IS_ERR(pb->pwm)) {
        ret = PTR_ERR(pb->pwm);
        if (ret != -EPROBE_DEFER)
            dev_err(&pdev->dev, "unable to request PWM\n");
        goto err_alloc;
    }

    dev_dbg(&pdev->dev, "got pwm for backlight\n");

    /* Sync up PWM state. */
    pwm_init_state(pb->pwm, &state);

    /*
     * The DT case will set the pwm_period_ns field to 0 and store the
     * period, parsed from the DT, in the PWM device. For the non-DT case,
     * set the period from platform data if it has not already been set
     * via the PWM lookup table.
     */
    if (!state.period && (data->pwm_period_ns > 0))
        state.period = data->pwm_period_ns;

    ret = pwm_apply_state(pb->pwm, &state);
    if (ret) {
        dev_err(&pdev->dev, "failed to apply initial PWM state: %d\n",
            ret);
        goto err_alloc;
    }

    memset(&props, 0, sizeof(struct backlight_properties));

    if (data->levels) {
        pb->levels = data->levels;

        /*
         * For the DT case, only when brightness levels is defined
         * data->levels is filled. For the non-DT case, data->levels
         * can come from platform data, however is not usual.
         */
        for (i = 0; i <= data->max_brightness; i++)
            if (data->levels[i] > pb->scale)
                pb->scale = data->levels[i];

        if (pwm_backlight_is_linear(data))
            props.scale = BACKLIGHT_SCALE_LINEAR;
        else
            props.scale = BACKLIGHT_SCALE_NON_LINEAR;
    } else if (!data->max_brightness) {
        /*
         * If no brightness levels are provided and max_brightness is
         * not set, use the default brightness table. For the DT case,
         * max_brightness is set to 0 when brightness levels is not
         * specified. For the non-DT case, max_brightness is usually
         * set to some value.
         */

        /* Get the PWM period (in nanoseconds) */
        pwm_get_state(pb->pwm, &state);

        ret = pwm_backlight_brightness_default(&pdev->dev, data,
                               state.period);
        if (ret < 0) {
            dev_err(&pdev->dev,
                "failed to setup default brightness table\n");
            goto err_alloc;
        }

        for (i = 0; i <= data->max_brightness; i++) {
            if (data->levels[i] > pb->scale)
                pb->scale = data->levels[i];

            pb->levels = data->levels;
        }

        props.scale = BACKLIGHT_SCALE_NON_LINEAR;
    } else {
        /*
         * That only happens for the non-DT case, where platform data
         * sets the max_brightness value.
         */
        pb->scale = data->max_brightness;
    }

    pb->lth_brightness = data->lth_brightness * (div_u64(state.period,
                pb->scale));

    props.type = BACKLIGHT_RAW;
    props.max_brightness = data->max_brightness;
    bl = backlight_device_register(dev_name(&pdev->dev), &pdev->dev, pb,
                       &pwm_backlight_ops, &props);
    if (IS_ERR(bl)) {
        dev_err(&pdev->dev, "failed to register backlight\n");
        ret = PTR_ERR(bl);
        if (pb->legacy)
            pwm_free(pb->pwm);
        goto err_alloc;
    }

    if (data->dft_brightness > data->max_brightness) {
        dev_warn(&pdev->dev,
             "invalid default brightness level: %u, using %u\n",
             data->dft_brightness, data->max_brightness);
        data->dft_brightness = data->max_brightness;
    }

    bl->props.brightness = data->dft_brightness;
    bl->props.power = pwm_backlight_initial_power_state(pb);
    backlight_update_status(bl);

    platform_set_drvdata(pdev, bl);
    return 0;

err_alloc:
    if (data->exit)
        data->exit(&pdev->dev);
    return ret;
}

static int pwm_backlight_remove(struct platform_device *pdev)
{
    struct backlight_device *bl = platform_get_drvdata(pdev);
    struct pwm_bl_data *pb = bl_get_data(bl);

    backlight_device_unregister(bl);
    pwm_backlight_power_off(pb);

    if (pb->exit)
        pb->exit(&pdev->dev);
    if (pb->legacy)
        pwm_free(pb->pwm);

    return 0;
}

static void pwm_backlight_shutdown(struct platform_device *pdev)
{
    struct backlight_device *bl = platform_get_drvdata(pdev);
    struct pwm_bl_data *pb = bl_get_data(bl);

    pwm_backlight_power_off(pb);
}

#ifdef CONFIG_PM_SLEEP
static int pwm_backlight_suspend(struct device *dev)
{
    struct backlight_device *bl = dev_get_drvdata(dev);
    struct pwm_bl_data *pb = bl_get_data(bl);

    if (pb->notify)
        pb->notify(pb->dev, 0);

    pwm_backlight_power_off(pb);

    if (pb->notify_after)
        pb->notify_after(pb->dev, 0);

    return 0;
}

static int pwm_backlight_resume(struct device *dev)
{
    struct backlight_device *bl = dev_get_drvdata(dev);

    backlight_update_status(bl);

    return 0;
}
#endif

static const struct dev_pm_ops pwm_backlight_pm_ops = {
#ifdef CONFIG_PM_SLEEP
    .suspend = pwm_backlight_suspend,
    .resume = pwm_backlight_resume,
    .poweroff = pwm_backlight_suspend,
    .restore = pwm_backlight_resume,
#endif
};

static struct platform_driver pwm_backlight_driver = {
    .driver        = {
        .name        = "pwm-backlight",
        .pm        = &pwm_backlight_pm_ops,
        .of_match_table    = of_match_ptr(pwm_backlight_of_match),
    },
    .probe        = pwm_backlight_probe,
    .remove        = pwm_backlight_remove,
    .shutdown    = pwm_backlight_shutdown,
};

module_platform_driver(pwm_backlight_driver);

MODULE_DESCRIPTION("PWM based Backlight Driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:pwm-backlight");

Ein Vergleich der beiden mit diff bringt etwas zum Vorschein. Genauer gesagt geht es um die Funktion static int pwm_backlight_initial_power_state(const struct pwm_bl_data *pb). In der "alten" Version hat diese Funktion noch eine gewisse Schaltlogik, wo GPIOs abgefragt werden und ein bool active entsprechend auf false gesetzt wird.
In der "neueren" Version hingegen fehlt diese Logik komplett. Meine Vermutung ist, dass dein Laptop aus irgendeinem Grund mit ausgeschaltenem Backlight bootet, und Kernel 5.14 es versäumt das zu erkennen und das Licht einzuschalten. Wer weiß, vielleicht verwendet Lenovo da die gleiche Firmware wie bei Geräten mit OLED? Das würde zumindest erklären, warum das Backlight (zur Sicherheit) erst mal ausgeschaltet ist...?
Func Fact: In Kernel-Version 5.15 ist die oben erwähnte Schaltlogik (in minimal abgewandelter Form) wieder ganz unten in der Funktion eingefügt worden. :ROFLMAO:
Du scheinst also mit 5.14 genau ein Fettnäpfchen erwischt zu haben, in das dein Laptop ausgerechnet hineintritt.
Fun Fact 2: Man gönne sich einmal den Kommentar in der 5.14er Version:
C:
    /*
     * If the driver is probed from the device tree and there is a
     * phandle link pointing to the backlight node, it is safe to
     * assume that another driver will enable the backlight at the
     * appropriate time. Therefore, if it is disabled, keep it so.
     */
"It is safe to assume" - Ich schmeiß mich weg :ROFLMAO:

Die Lösung?
Naja, entweder du upgradest zu Kernel 5.15, das sollte funktionieren.
Alternativ: Schalt den Kernel-Backlight Quatsch komplett ab, und benutze wie hier beschrieben den Treiber des Herstellers.
Dafür einfach /etc/default/grub öffnen und aus
GRUB_CMDLINE_LINUX_DEFAULT="quiet splash"
geschwindt
GRUB_CMDLINE_LINUX_DEFAULT="quiet splash acpi_backlight=vendor"
machen.

Hoffen'wa mal das funktioniert.
Gruß Technipion
 
Die Lösung?
Naja, entweder du upgradest zu Kernel 5.15, das sollte funktionieren.
Alternativ: Schalt den Kernel-Backlight Quatsch komplett ab, und benutze wie hier beschrieben den Treiber des Herstellers.
Dafür einfach /etc/default/grub öffnen und aus
GRUB_CMDLINE_LINUX_DEFAULT="quiet splash"
geschwindt
GRUB_CMDLINE_LINUX_DEFAULT="quiet splash acpi_backlight=vendor"
machen.

Hoffen'wa mal das funktioniert.
Gruß Technipion
Hab jetzt nicht den ganzen C-Code durchgelesen (nach 4-5 Zeilen C-Code fang ich immer an zu schielen...)

Das seltsame:
Ich drücke Power-Knopf
nach 1-2 Sekunden kommt das Lenovo-Logo mitten auf dem Screen
dann schaltets zu den Boot-Messages um
Ich habe zwei Seiten Boot-Messages, bevor LightDM startet
Die erste Seite der Messages ist ganz normal in voller Helligkeit, schaltet er um auf die zweite Seite, da dunkelts ab, und LightDM startet in das Dunkle, und bleibt dort

Den GRUB-Eintrag habe ich aber schon seit Urzeiten drin (ausser dem quite splash, weil ich die Boot-Messages sehen will), heisst daran kann es nicht liegen.
Ausserdem aufgefallen: acpi_backlight war bei mir gar nicht installiert früher.
Habs jetzt mal explizit installiert, hat aber auch nix gebracht.
Werd wohl auf 5.13 bleiben, und auf 5.15 warten (zur Zeit in meinem Manjaro nicht verfügbar bzw. gilt mWn als experimentell)

EDIT: "It is safe to assume"???? Muss wohl ein ehemaliger Microsoft-Mitarbeiter gewesen sein.......
 
Zuletzt bearbeitet:
Komisch irgendwie :confused:

Kannst du vielleicht mal per SSH oder externen Bildschirm auf deinen gebooteten Laptop zugreifen und posten was dmesg anzeigt? Vielleicht hilft uns das weiter...

EDIT: "It is safe to assume"???? Muss wohl ein ehemaliger Microsoft-Mitarbeiter gewesen sein.......
:ROFLMAO:
Aber du wärst überrascht was in der Programmiererwelt abgeht. Leider sind auch dort nicht alle so wissbegierig und lernfähig (und bereit ihre grauen Zellen anzustrengen) wie du...

Gruß Technipion
 
Hab gerade nachgeschaut: Meine udev-Regel war korrekt.
in /sys/class/backlight ist "amdgpu_bl1" drin

Auch gerade gemerkt unter 5.13.19: Die Hell-Dunkel-Funtionstasten gehen nicht. Falsches Binding wohl

Bash:
[zvoni@Ideapad110 ~]$ sudo dmesg | grep 'amd'
[    0.000000] random: get_random_u32 called from bsp_init_amd+0x253/0x270 with crng_init=0
[   21.894436] [drm] amdgpu kernel modesetting enabled.
[   21.895110] amdgpu: Topology: Add APU node [0x0:0x0]
[   21.895174] fb0: switching to amdgpudrmfb from EFI VGA
[   21.895306] amdgpu 0000:00:01.0: vgaarb: deactivate vga console
[   21.896242] amdgpu 0000:00:01.0: amdgpu: Trusted Memory Zone (TMZ) feature not supported
[   21.901812] kfd kfd: amdgpu: STONEY  not supported in kfd
[   21.901850] amdgpu 0000:00:01.0: amdgpu: Fetched VBIOS from VFCT
[   21.901855] amdgpu: ATOM BIOS: 113-C91400-005
[   21.901919] amdgpu 0000:00:01.0: amdgpu: VRAM: 512M 0x000000F400000000 - 0x000000F41FFFFFFF (512M used)
[   21.901922] amdgpu 0000:00:01.0: amdgpu: GART: 1024M 0x000000FF00000000 - 0x000000FF3FFFFFFF
[   21.901968] [drm] amdgpu: 512M of VRAM memory ready
[   21.901971] [drm] amdgpu: 3072M of GTT memory ready.
[   22.397707] amdgpu: hwmgr_sw_init smu backed is smu8_smu
[   22.673566] amdgpu: smu version 26.15.00
[   22.720428] snd_hda_intel 0000:00:01.1: bound 0000:00:01.0 (ops amdgpu_dm_audio_component_bind_ops [amdgpu])
[   22.929243] amdgpu 0000:00:01.0: amdgpu: SE 1, SH per SE 1, CU per SH 3, active_cu_number 3
[   22.930511] fbcon: amdgpudrmfb (fb0) is primary device
[   23.031637] amdgpu 0000:00:01.0: [drm] fb0: amdgpudrmfb frame buffer device
[   23.055428] [drm] Initialized amdgpu 3.41.0 20150101 for 0000:00:01.0 on minor 1
[   23.086370] audit: type=1130 audit(1633364885.223:7): pid=1 uid=0 auid=4294967295 ses=4294967295 msg='unit=systemd-backlight@backlight:amdgpu_bl1 comm="systemd" exe="/usr/lib/systemd/systemd" hostname=? addr=? terminal=? res=success'

EDIT: Habe eben acpi_osi=linux in grub dazugefügt, Grub neu erzeugt und rebootet. Nada, Njet
Seltsamerweise funktionieren die Laut/Leise-Tasten

Aber jetzt wirds interessant. Was seh ich denn da in der fünften Zeile?
Hatte nämlich bemerkt, dass ich in /sys/class/backlight nen zweiten Eintrag hatte
Bash:
[zvoni@Ideapad110 ~]$ ls /sys/class/backlight
amdgpu_bl1  ideapad
[zvoni@Ideapad110 ~]$ sudo dmesg | grep 'ideapad'
[sudo] Passwort für zvoni:
[   18.793233] ideapad_acpi VPC2004:00: Keyboard backlight control not available
[   18.839972] ideapad_acpi VPC2004:00: DYTC interface is not available
[   21.907759] audit: type=1130 audit(1633373336.043:6): pid=1 uid=0 auid=4294967295 ses=4294967295 msg='unit=systemd-backlight@backlight:ideapad comm="systemd" exe="/usr/lib/systemd/systemd" hostname=? addr=? terminal=? res=success'
 
Zuletzt bearbeitet:
Kurzes Feedback zu dem Thema:
Hab jetzt auf Kernel 5.15.Irgendwas hoch gegraded. Der Bug ist weg. Muss also wirklich diese fehlende/kaputte Funktion im Source-Code gewesen sein.
Wobei die Hell/Dunkler-Funktions-tasten noch immer nicht funktionieren

btw: Derzeitige Manjaro-Version heisst "Qonos"
Sitzt da ein Klingone im Names-Vergabe-Komitee?

EDIT: Das mit den Hell/Dunkel-Fn-Tasten (DYTC-Interface): Der Kernel unterstützt nur Version 5 und aufwärts
Mein Ideapad ist auf Version 4......
Wie ein bekannter Fussball-Trainer sagte: "Lebbe geht weida"
 
Zuletzt bearbeitet:
der letze Bug im Kernel der bei mir aufgestossen ist: keine Bluetooth unterstützung mehr, zwei versionen später war der Bug weg.
 
Status
Dieses Thema wurde gelöst! Zur Lösung gehen…
Zurück